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STRUCTURAL OPTIMIZATION WITH PROBABILITY
OF FAILURE CONSTRAINT

By Dhanjoo N. Ghista
Ames Research Center

SUMMARY

Minimum weight structural design consists in determining the set of
design parameters of the structure which makes the weight of the structure a
minimum without violating the constraints imposed on the structure.

In a structural optimization problem, where the constraints are the
limiting stresses, failure is absolutely prevented, that is, with a probabil-
ity of 1. Such absolute safety not only limits the minimization of weight but
is idealistic and therefore impractical, for in actual systems limits must be
imposed within which failure can occur. The limiting stress constraint,
having a failure probability of O, is hence replaced by a limiting probability
of failure constraint.

In this paper, the concept of probability of failure is explained for a
general gstructural system under simultaneous and alternative load systems. It
is then shown how the probability of failure constraint can be formulated in
terms of the structural design parameters. This constraint is developed in
detail for optimizing a simple truss whose design parameters are the section
areas of the members. The optimizing weight function and the constraint in
terms of the design parameters define the mathematical model of the structural
optimization problem. The structural synthesis method is suggested for
solving the mathematical programming problem, and it is shown how the proba-
bility of failure constraint can be incorporated in the synthesis technique.
The application of the consgtraint is illustrated by means of two simple
examples with reference to the truss.

INTRODUCTION

Minimum weight structural design consists in determining the set of
design parameters of the structure which makes the weight of the structure a
minimum and at the same time ensures that the structure is safe under the
governing load system. To determine whether a structure is safe or not, the
computed design stresses are compared with the permissible stresses. The
structure will fail if the stress in any component exceeds the allowable
limit.

In a structural optimization problem, where the constraints are the
limiting stresses, the extent to which the weight can be diminished is
governed, then, by the limiting stress constraint. TImposing this constraint
prevents failure abgolutely, that is, with a probability of 1. Now the design



stresses in the components of a structure are a function of the loading, the
structural design parameters, namely, the sizes of the elements and the
material properties. The permissible stress or the failure stress for a
particular material is a physical property of the material. The properties
have to be estimated to represent all possible relevant conditions. Past
experience shows that it 1s possible to represent a material property by a
frequency distribution. Such a distribution, then, furnishes its most probable
value, that is, its mean and its probable range of fluctuation represented by
its standard deviation. Similarly, the applied loading is a random variable
and may also be represented by a freguency distribution. This enables an
assessment to be made of the most probable conditions, fluctuation ranges, and
the probability that certain extremes will occur.

It is seen, then, that to prevent failure absolutely, extreme fluctua-
tions of load and permissible stresses would have to be taken into account,
that is, the upper and lower extremes of the load and permissible stress.
Such absolute safety not only limits the minimization of weight but is ideal-
istic. On actual systems, limits must be imposed within which failure can
occur. For the most conservative system, failure can be made highly improb-
able by making its probability small but it is impractical to attempt to
prevent it absolutely. The limiting stress constraint, having a failure
probability of O, is hence replaced by a limiting probability of failure

constraint.

In assigning probability of failure to a structure, a compromise has to
be made between the level of economy to be maintained and the amount of risk
a designer is prepared to undertake. Consider now, as examples, two struc-
tural systems: (1) a system of limited purpose mission with a large number of
units per mission, such as missiles, (2) a multipurpose single trial system,
such as a Mars probe lander. In the case of missiles, say if 50 missiles were
to be deposited over an area, it does not matter if 1 or 2 do not come off and
fail to accomplish the mission. So it pays not to overdesign the missile and
to allow a possibility of failure of 1 or 2 out of 50 as a result of stresses
exceeding thelr limiting values. This means that in the design of the missile,
the probability of failure should be less than or equal to 0.02 or 0.04. Such
a constraint, as opposed to a failure probability of 0, results in consider-
able saving in the weight of the missile. In the case of a single trial
system such as a Mars probe lander, the probability of failure would have to

be extremely small, say 1 in 107.

A reliability approach to structural design has been recognized increas-
ingly during the past decade (see Bibliography); the researchers have stressed
the problemsg of introducing realistic safety factors and of proportioning a
structure to meet a prescribed reliability. This literature indicates the
need for a method of systematic determination of the minimum weight design of
a structure within limits of a prescribed probability of failure. This paper,
then, endeavors to present a compact mathematical model of the structural
optimization problem wherein the merit function to be optimized is the struc-
tural weight, and the probability of failure of the structure is expressed in
terms of the design parameters and employed as a constraint in the

optimization problem.



In this paper, the concept of probability of failure is explained for a
general structural system under simultaneous and alternative load systems.
It is then shown how the probability of failure constraint can be formulated
in terms of the structural design parameters. This constraint is developed in
detail for the optimization of a simple truss whose design parameters are the
section areas of the members. The mathematical model of the structural opti-
mization problem is defined by the optimizing weight function and the con-
straint in terms of the design parameters. The structural synthesis method is
suggested for solving the mathematical programming problem, and it is shown
how the probability of failure constraint can be incorporated in the synthesis
technique. The application of the constraint is illustrated by means of two
simple examples with reference to the truss.

NOTATION

A; ith design parameter (area of the ith member of the truss, with
i=1,2 for bars OA and OB, respectively)

i modulus of elasticity

¥y failure stress of the 1ith element, taken to be a normally
distributed random variable

Pij probability of failure of the ith element under Jth loading

PF probability of failure of the structure under loading Qj

%
PF probability of failure of the structure

Qj(jzl,g) Jth loading, taken to be a normally distributed random variable

QJ mean of random variable Qj

Rij force in dith member under Jjth loading
W structural weight

s applied stress in ith element

& 3 random variable [F - (Riin)]

1 length of either member of the truss

o) densgity of material for the truss

GQJ standard deviation of random variable Qj



ANALYSIS

Factors Influencing the Probability of
Failure of the Structure

Dead load.- Factors causing variation in dead load are the dimensions of
the structure and the specific weight of the materials.

Live load.- To have a complete representation of live load, it is neces-
sary to know the most probable conditions of loading with a high frequency of
occurrence and, at the same time, to allow for certain adverse conditions that
could occur. For example, if the loading represents wind load, one must know
what percentage of time the wind velocity is in a certain range and also the
magnitude of, say, hundred-year gales.

The variation in loading, its most probable value, and estimates of cer-
tain extreme cases can be represented by a frequency distribution with given
mean and standard deviation.

Structural stiffness.- The structural stiffness depends upon the struc-
tural configuration and the elasticity of the members. The modulus of elag-
ticity of the structure is a constant, statistically only. It can be
represented by a frequency distribution with given mean and standard devia-
tion. The sizes and the dimensions of the structures can have definite
variations about their mean values if their tolerances are specified. The
design stress in a member is then a function of the loading and the
structural stiffness.

Failure stress.- The failure stress is a physical property of the
material. Its variability depends on the control exercised during
manufacturing process. It, too, is represented by a frequency distribution.

Development of Probability of Failure Constraint

Consider a structure made up of r elements Or components. Let Q1
and Q2 represent two independent loading systems; Ql and Q2 are random
variables, normally distributed with means Q1 and Q2 and standard deviations
oQ1 and 0o regpectively. It could happen that both QL1 and Q2 would act
simultaneously as dead and live loads on the structure. On the other hand,
the structure could be undergoing alternative loadings, in which case either
Ql or Q2 would be acting but not together. Assume that the mode in which
each component or element falls is known. The corresponding failure stress
(of the ith element) is denoted by F;, which is taken to be normally dis-
tributed with mean Fi and standard deviation GFi. It is reguired that the

probability of failure of the structure not exceed a fixed value .’

Let the parameter Aj; represent the size of a component to be deter-
mined. The design parameters A4 constitute the variables for the optimiza-
tion problem., For a given structure, the design stresses are functions of
member sizes Aj and the elasticity E of the material. For the sake of



convenience, Ay and E are not taken to be random variables, but constants,
in order to simplify the determination of the frequency distribution of the
applied stress. The weight (W) of the structure is expressed as a function
of the design parameters Aj. The optimization problem consists in determin-
ing Ay so that W is a minimum and the probability of failure of the
structure Pp 1s less than or equal to «.

Let PFQl and. PFQ2 represent the probgbilities of failure of the

structure under loadings Q1 and Q2, respectively. If the loadings QL and
Q2 are such that they may or may not act simultaneously, then the structure
can fail when either Q1 or Q2 or both Ql and Q2 are acting on the struc-
ture. Then, the desired probability of failure of the structure is the
probability that it will fail under Ql or Q2 or QL and Q2 acting together

[PFQ1 or Q2 or (QlL and Qg)] and is given by

P =P + P - Pp P 1
[Fm or @2 or (Ql and Q,2):! Fqu ™ “Fqe Fo1 Foe ()
For any loading, the probability of failure of the structure (PF) is
expressed in terms of the probabilities of failure of its constituent
elements (Pi) as follows:

Pp=1-(1-P)(1-P3) ... (L-P;) ... (L-P) (2)

A structural element will fail when the stress (fi) in 1t, due to the
applied loading, exceeds the allowable 1limit Fi. Let P; denote the
probability of failure of an element. Thus

P; = P(f; > Fy) = P(Fy - £1 < 0) (3)

The quantity of interest is, then, the random variable (Fi - ;). TLet us
consider the distribution of f3. It is a function of the loading and the
stiffness of the structure. The latter quantity is assumed to be a constant,
for the sake of simplicity. Hence, if the loading is normally distributed,
f; will also be normally distributed. Also, F; 1is normally distributed.
The random variable (Fi - f5) is thus normally distributed. Now given the



values of the design parameters A;, the random variables (F; - f;) all become
determinate; in other words, the means and standard deviations are known. It
is then possible to determine the probabilities (P;) of the constituent
elements and hence from equations (1) and (2) the probability of failure of

the structure, that is, either PFQl a g2 or PFQl Q2’ as the case may be.
an or

Thus, Pp 1is a function of the design parameters Aj.

P(Ay, As, - . . Ay, « « - AL)

(%)

The weight (W) of the structure can also be expressed in terms of the design
parameters:

i <?FQ1 and 02 °F TFQ1 or q2 or Q1 + Qa> B

W="WA, Az, « « o Aj, o o A (5)
r

The optimization problem consists in optimizing the function W (eq. (5)),
subject to the constraint that Pp (eq. (4)) is less than or equal to the
permissible limit «. Now that the optimizing function and the constraint
have been expressed in terms of the design parameters, the stage is set for
the optimizing process. To this end, the method of structural synthesis
(ref. 2) can be employed.

Optimization Method

The structural optimization problem being considered is a mathematical
programming problem for determining the optimum set of design parameters that
minimizes the weight of the structure and restricts its probability of failure
below a certain value. The method of structural synthesis is suggested for
solving this problem.

The synthesis method consists in repeated and systematic redesign of a
structure by means of 1its governing principles without violating the con-
straints imposed on the structure. A trial set of parameters is initially
selected. For this set, the probability of failure of the structure under
either Q1 or Q2 is calculated and checked to see 1f it exceeds the allowable
limit «. If not, the assumed values of the design parameters are altered so
as to diminish the weight. This modification is made according to the govern-
ing principles of the method. With every modification, the probability of
failure is calculated and checked as to whether it exceeds the allowable
limit. The optimum set of parameters is said to have been reached when it is
no longer possible to cause modifications in them, so as to diminish the
weight of the structure without violating the probability of failure criterion

PFSGJ.

The method is qualitatively illustrated with a simple problem which
requires only two design parameters to define a given design. Such a
situation can be easily graphed so that the problem constraints and the
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solution technique can be visualized. The design problem is to determine the
optimum values of areas A; and A, of the two-bar truss (fig. 1) so as to
minimize (without the probability of failure exceeding a) the weight of the
truss. TFigure 2 is a plot in what may be called the design parameter space.
The design parameters A; and A, are the abscissa and ordinate, so that any
point in the design space represents a design. The weight contours

W(Al)AZ) = Cm

are plotted in the design space for different values (Cp) of the structural
weight. The constraint curve

Pp(A1,A2) =

is also shown plotted in the design space. Notice that the feasible region
consisting of the set of all points of designs is bounded by the inequality

Po(A1,42) < a

Clearly, the design satisfying the constraint which has the minimum weight
occurs at M, the point of tangency of the minimum possible valued weight
contour to the constraint curve. When there are more than two design param-
eters, such a graphical solution is not possible. In such a case, the
synthesis method provides means of systematic convergence to optimum design
from a trial design. The two-dimensional case makes it possible to illustrate
graphically the principles of this technigue by means of figure 2.

In terms of the design space, a design point could be
,n=1,2, « . ), if it lies"

(1) A free point (e.g., points &,
in the feasible region

(2) A bound point (e.g., point B), if it lies on the constraint
curve

(3) A violation point V, if it violates the constraint.

In essence, the method consists of a combination of three directives in terms
of effecting changes in the design parameters at a current point, depending on
whether it is a free point, a bound point, or a violation point (see ref. 2
for a more elaborate presentation of the method). They are as follows:

(a) If the current design point is free (Fn), changes are so made
that the rate of change of weight is a maximum. This corresponds
to a travel in the design space in the direction of the gradient
of the weight function.

(b) If the current design point is a bound point (B), travel to an
alternate point on the same weight contour and adopt directive

(a).



(e¢) If the current design point is a violation (V), retreat to the
previous design point and travel to an alternate point on the
same weight contour from where it is possible to adopt directive

(a).

Figure 2 shows a probable convergence path from a trial design point F, +to
the optimum design point M.

Optimization of a truss for a given probability of failure constraint.-
Consider a statically determinate truss AOB (fig. 1). The given data consist
of (1) two loadings Q1 and Q2 which may or may not occur simultaneouslz.
Both Ql and Q2 are random variables, normally distributed with means Q1
and Q2 and standard deviations opy and ogp, respectively; (2) failure
stress F, which is a random variable normally distributed with mean T and
standard deviation op; and (3) the probability o that the structure will

fail under either Ql or Q2 or (Ql and Q2), namely [BFQl or @2 or (QL and QEﬂ.

The design parameters to be determined are areas A; and An of the bars
OA and OB, respectively. Areas A; and Ao are unknown constants. It is
required to minimize the weight (W) of the truss subject to the constraint
that the probability that it fails under Ql or Q2 does not exceed .

If p 1is the density of the material and 1 the length of each bar,
then the weight (W) of the truss is given by

W=pl(AL + Ao) (6)

Let Rii and Roy denote the forces in the bars OA and OB wunder the load
Ql, and Rio and Rop, the forces in OA and OB under the loading Q2. Let
Py, and Ps; denote the probability of failure of bars OA and OB, respec-
tively, under the loading @Ql; and Pio and Poz denote the probabilities of
failure of bars OA and OB, respectively, under the loading Q2. Now,

o (R
Pij—P<RAi >F>
Rij
-2 (F -~ <o> (7)
i

where i = 1, 2 for the bars OA and OB, respectively, and J = 1, 2 for the
two load systems. Under the action of the load Q2, the bar OB is in com-
pression and is, hence, liable to buckle. However, it is assumed that the bar
OB has a low slenderness ratio and will consequently fail by yielding of the
material at the stress F TDefore the critical buckling stress is reached.

Let 81 j denote the random variable F - (Rij/Ai)3 then



A

Piy= P(gij < 0) (8)

It is necessary to examine the random variable gij to be able to determine

Pij’ In general

gij=F—

Rij
Al
)
- (9)
Ci.(e)A.
J i

where Cj3(6) is a function of 0. Now since 6 1is a constant, C;j; is a
constant; also A; 1is,in this distribution equation, & constant, and

F and Q; are normally distributed. Hence, g;: 1is a normally distributed
random variable. The mean and standard deviation of the distribution 81 3
are given as mean

= . I
g.. =T - (10)
standard deviation
GQJZ 1/2 (11)
2
o =0+ ——— 11
& s < ¥ 2 g>
The constant Cij is represented as follows:
Ci1 = 2 cos 6 , for bar OA under loading Q1
Co1 = 2 cos 8 , for bar OB wunder loading Q1
Cizo =2 gin 6 , for bar OA wunder loading Q2
Coo = 2 sin 6 , for bar OB under loading Q2
Now, the probability of failure
PR Y- 2
o 1 ‘(gij - gij) /ZGgij
P. . ='Jf — e dgi 3 (12)
+d -0 N2t ©
8ij
The probability of failure of the structure is
[PFQl or @2 or (Ql and Q2)} = Prqy * PFqp - PrqiFrge (13)

where




Ppo=1-(1-P,)(1 ~P,,) (14)
Ql
PF =1- (l - Plz)(l - P22) (15)
Q2
In the characteristics of the distribution 8: 3 . (egs. (10) and (11)), the
quantities F, O QJ, GQ > and C; are avallable from the given data. The

only unknown quantity is Ai' Thus, the characteristics of g1y are unknowns

in Ay; that is, they are unknown functions in the variable A;. Hence, Pij
(eq. (12)) is also a function of the variable Ai. From equation (13), the
probability of failure of the structure is an unknown function in the vari-

ables A; and Ap (i.e., Pp = Pp(AL, A2)). The condition
PF = PF(A]_, Ag) S o8 (16)

is thus a constraint in the variables A; and Ap. For the structural optimi-
zation problem, the next function is the weight W of the truss (given by
eq. (6)), the constraint is represented by equation (16), and the design
parameters are A; and As. The synthesis method can then be employed to
obtain the optimum set of design parameters A; and Ao 80 that W is a
minimum and PF doeg not exceed a.

NUMERICAL EXAMPLES

The above sample problem is solved for the following two sets of data:

F = 15,000 1b/in.2, op = 500
Ql = 30,000 1b, @2 = 30,000 1b
Ol = Ogo = 1,000

6 = 4s5°

(1) P =0.01 (2) Pp = 0.2

The graphical solutions of the problem are presented in figure 3. The

optimum d651gn varameters for the two cases are: (1) A; = 1.615 in.=,
As = 1.615 in.? with the weight parameter W/pl = 3.23 in.2, and (2)
Ay = 1.524 in.2, Ao = 1.524 in.? with the weight parameter W/pl = 3.048 in.Z2.

On the other hand, if the idealistic version of failure (Pp 3 O) were
adopted (i.e., if failure were prevented with certainty in de31gn1ng the
truss), then extreme values of loading and allowable stress would have to be
considered. Let Q be the upper extreme value of loadings Ql and Q2 such
that the probability of the load exceeding Qp is O.987Xlo“9; then for the
above data Qp = 36,000 1b. Let Fp represent the lower extreme value of the
stress F such that the probability of the stress being less than Fp 1is

10



0.987x107®; then for the above data Fp = 12,000 psi. For this case, then,

the design parameters are A; = 2.1k in.?, A5 = 2.14 in.2, and the weight
parameter W/pl = 4.28 in.Z.

CONCLUDING REMARKS

The concept emphasized in this paper is the employment of probability of
failure constraint in the mathematical programming problem to determine the
set of design parameters which minimizes the weight of the structure. It is
shown how the probability of failure constraint of & structure can be formu-
lated in terms of the design parameters; then, knowing the optimizing weight
function in terms of the design parameters defines the mathematical model of
the structural optimization problem completely.

It is seen that for the same loading, a truss designed for a probability
of failure of 0.2 is lighter than that designed for a probability of failure
of 0.01. However, both these structures are much lighter than that designed
to prevent fallure absolutely, that is, designed for Py = O. The probabil-
ities of failure of 0.2 and 0.0l are realistic compared to the idealistic
probability of failure of zero. If these probabilities are arrived at by a
Judicious compromise between the weight saving desired and the amount of risk
that could be afforded, then it can be seen that considerable weight can be
saved by designing the structure for realistic probabilities of failure.

Ames Research Center
National Aeronsuticg and Space Administration
Moffett Field, Calif., Sept. 12, 1966
124-08-06-01-21
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Figure l.- Truss being considered for explanation of probability of
failure constraint.
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Figure 2.~ Design parameter space for the truss of figure 1.
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